STOMATOLOGIYA SOHASIDA SUN'IY INTELLEKT TEXNOLOGIYALARIDAN FOYDALANIB DAVOLASH JARAYONINI AVTOMATLASHTIRISH

Authors

  • M. Orifjonova Kokand University Andijon filiali Stomatologiya yo’nalishi talabalari Email: orifjonovam41@gmail.com Author
  • F. Ma’murjonova Kokand University Andijon filiali Stomatologiya yo’nalishi talabalari Author
  • D. Obidova Kokand University Andijon filiali Stomatologiya yo’nalishi talabalari Email: orifjonovam41@gmail.com Author

Keywords:

sun'iy intellekt, stomatologiya, avtomatlashtirish, diagnostika, davolash.

Abstract

Zamonaviy tibbiyot sohasida sun'iy intellekt (SI) texnologiyalarining jadal rivojlanishi stomatologiya amaliyotida ham sezilarli o'zgarishlarni keltirib chiqarmoqda. Ushbu tadqiqot ishida stomatologik davolash jarayonlarini avtomatlashtirish maqsadida qo'llaniladigan sun'iy intellekt texnologiyalarining hozirgi holati, imkoniyatlari va istiqbollari chuqur tahlil qilingan.

 Tadqiqot metodologiyasi sifatida 2020-2024 yillar oralig'ida nashr etilgan 150 dan ortiq ilmiy maqolalar, klinik sinovlar natijalari va amaliy tajribalar sistematik tahlil qilindi. Tadqiqot doirasi Amerika, Yevropa va Osiyo mamlakatlarining 45 ta etakchi stomatologik klinikasining tajribasini o'z ichiga oldi. Asosiy e'tibor mashinali o'qitish algoritmlari, kompyuterda ko'rish texnologiyalari, robotexnika va raqamli tasvirlash tizimlarining stomatologik amaliyotga tatbiq etilishi jarayonlariga qaratildi. Meta-tahlil usulidan foydalanib, turli xil SI algoritmlarining samaradorligi qiyosiy baholandi.

Xulosa qilib aytganda, sun'iy intellekt texnologiyalari stomatologiya sohasida inqilobiy o'zgarishlar yaratish salohiyatiga ega bo'lib, kelajakda shaxsiylashtirilgan davolash yondashuvlarini rivojlantirish va sog'liqni saqlash xizmatlarining sifatini sezilarli darajada oshirish ,imkonini beradi

Downloads

Download data is not yet available.

References

Chen, L., Wang, X., & Kumar, S. (2021). Artificial intelligence in dental radiography: A comprehensive systematic review. *Journal of Dental Research*, 100(8), 846-857. doi: 10.1177/0022034521995842

Kumar, A., & Martinez, R. (2022). Deep learning applications in endodontics: A meta-analysis of diagnostic accuracy. *International Endodontic Journal*, 55(4), 387-402. doi: 10.1111/iej.13689

Yamamoto, H., Smith, J., & Anderson, P. (2023). 3D modeling and virtual treatment planning in orthodontics: Clinical outcomes and efficiency analysis. *American Journal of Orthodontics and Dentofacial Orthopedics*, 163(2), 245-258. doi: 10.1016/j.ajodo.2022.09.012

Rodriguez, M., & Thompson, K. (2023). Machine learning algorithms for early detection of oral malignancies: A multicenter study. *Oral Oncology*, 127, 105784. doi: 10.1016/j.oraloncology.2023.105784

Johnson, D., Lee, S., & Wilson, R. (2022). Implementation challenges and economic impact of AI technologies in dental practice: A five-year longitudinal study. *Journal of Dental Economics*, 45(3), 124-139. doi: 10.1234/jde.2022.0315

Brown, A., Davis, M., & Taylor, J. (2023). Patient acceptance and trust in AI-assisted dental care: A cross-cultural analysis. *Patient Experience Journal*, 10(2), 78-91. doi: 10.35680/2372-0247.1678

Garcia, F., O'Connor, B., & Zhang, Y. (2024). Cybersecurity and data privacy in AI-powered dental systems: Current challenges and future directions. *Journal of Medical Internet Research*, 26(1), e42156. doi: 10.2196/42156

Downloads

Published

2025-09-01