APPLICATION OF GNSS FOR HIGH-PRECISION REMOTE MONITORING OF BRIDGES: MATHEMATICAL MODELS, METHODS AND ENGINEERING APPROACHES.

Authors

  • Alimdjanov X F (senior teacher of Department of Technologies of Mobile Communication, Tashkent University of Information Technologies named after Mukhammad al-Khwarazmi) Author

Abstract

This paper is devoted to the consideration of theoretical and applied aspects of the use of satellite remote sensing technologies — global navigation satellite systems (GNSS) for monitoring the condition of bridge structures. The focus is on methods of high-precision recording of interspan displacements resulting from geodynamic, climatic and operational impacts. Mathematical models of positioning (including the pseudorange equation and phase shifts) are presented, comparative characteristics of RTK and PPP are given, as well as an assessment of the reliability of data transmission. The advantages of integrating satellite methods into the engineering monitoring system of transport infrastructure are substantiated.

Downloads

Download data is not yet available.

References

Milillo, P., Raucoules, D., Samsonov, S., et al. (2019). Pre-collapse space geodetic observations of critical infrastructure: the Morandi Bridge, Genoa, Italy. Remote Sensing, 11(12), 1403.

Sato, T., Tadokoro, K., et al. (2013). Displacement of bridges during the Great East Japan Earthquake observed by GNSS. Journal of the Japan Society of Civil Engineers, Ser. A1, 1(1), 1–9.

Rijkswaterstaat. (2020). Monitoring subsidence and bridge stability in soft soil regions using InSAR. Technical Report, Netherlands Ministry of Infrastructure and Water Management.

ESA Sentinel-1 Mission. (2021). Technical Documentation on SAR Processing and Interferometry. European Space Agency.

Farxadovich A. X. TRENDS IN THE DEVELOPMENT OF SATELLITE COMMUNICATIONS IN THE DEVELOPMENT OF NEW SYSTEMS //SCIENTIFIC APPROACH TO THE MODERN EDUCATION SYSTEM. – 2024. – Т. 3. – №. 26. – С. 208-210.

Farxadovich A. X. СПУТНИКОВЫЕ НАВИГАЦИОННЫЕ СИСТЕМЫ //PROSPECTS AND MAIN TRENDS IN MODERN SCIENCE. – 2024. – Т. 1. – №. 12. – С. 151-154.

Farxadovich A. X. CALCULATION OF THE SIGNAL-TO-NOISE RATIO FOR A CUBESAT SATELLITE //INTERDISCIPLINE INNOVATION AND SCIENTIFIC RESEARCH CONFERENCE. – 2024. – Т. 3. – №. 26. – С. 232-234.

Davronbekov D. A. et al. Power providing methods for wireless sensors //2019 International Conference on Information Science and Communications Technologies (ICISCT). – IEEE, 2019. – С. 1-3.

Davronbekov D. A. et al. Analysis of features of wireless sensor networks //Scientific Collection «InterConf»,(41): Proceedings of the 7th International Scientific and Practical Conference «Scientific Horizon in The Context of Social Crises. – 2021. – С. 1044-1051.

ГОСТ Р 58121.1-2018. Системы GNSS-мониторинга инженерных сооружений. Общие положения.

ФГБУ «НИЦ «Планета». (2022). Применение спутниковой интерферометрии для мониторинга инженерных сооружений в условиях вечной мерзлоты. Материалы докладов РАН.

Lasri, O., Giordano, P.F., Previtali, M., & Limongelli, M.P. (2023). Remote monitoring of a concrete bridge through InSAR and GNSS measurements. Life-Cycle of Structures and Infrastructure Systems – Biondini & Frangopol (Eds).

Zhou, Y., Li, Z., & Wang, C. (2020). Comprehensive time-series analysis of bridge deformation using Persistent Scatterer Interferometry. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 268–281.

Kim, J., & Lee, S. (2019). Long-Term Deflection Monitoring for Bridges Using X and C-Band Multi-Temporal InSAR Observations. Remote Sensing, 11(11), 1258.

Shirzaei, M. (2023). A Kalman Filter Framework for Resolving 3D Displacement Field Time Series by Combining Multitrack Multitemporal InSAR and GNSS Horizontal Velocities. arXiv preprint arXiv:2303.03954.

De Corso, T., Mignone, L., Sebastianelli, A., et al. (2020). Application of DInSAR Technique to High Coherence Satellite Images for Strategic Infrastructure Monitoring. arXiv preprint arXiv:2004.09501.

Downloads

Published

2025-06-05