DASTURCHILAR UCHUN NEYRON TARMOQ MODELLARINI YARATISH VA OPTIMALLASHTIRISH
Keywords:
neyron tarmoqlar, Machine Learning, ML, sun’iy intellekt, avtonom tizimlar, generative AL, robototexnika.Abstract
Ushbu maqolada neyron tarmoq modellarini yaratish va optimallashtirishni o’rganish haqida umumiy ma’lumotlar keltirib o‘tilgan. Neyron tarmoqlarning qurish muhim bosqichlarini jumladan ma’lumotlarni tayorlash, model arxitekturasini loyihalash, o‘qitish va optimallashtirish usullarini muhokama qiladi. Neyron tarmoqlarning amaliy qo’llanilishi uning zamonaviy texnalogiyalarga va kelajakdagi innovatsiyalarga o’sib borayotgan tasirini ko’rsatadi.
Downloads
References
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877-1901.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. International Conference on Learning Representations (ICLR).
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 10012-10022.
He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R. (2022). Masked autoencoders are scalable vision learners. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 16000-16009.
Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., ... & Sutskever, I. (2021). Zero-shot text-to-image generation. International Conference on Machine Learning (ICML), 8821-8831.
Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2021). Learning transferable architectures for scalable image recognition. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8697-8710.
Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, I. (2022). Learning transferable visual models from natural language supervision. International Conference on Machine Learning (ICML), 8748-8758.
Zhang, H., Dana, K., Shi, J., Zhang, Z., Wang, X., Tyagi, A., & Agrawal, A. (2023). Context encoding for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 45(2), 319-333.