ORGANIZATIONAL AND MANAGEMENT ASPECTS OF ARTIFICIAL INTELLIGENCE IMPLEMENTATION IN REPRODUCTIVE CENTERS
- Authors
-
-
Goikhman Yaron Borisovich
Author -
Adkhamova Negina Pulatovna
Author -
Alimov Ijod Rustamzhonovich
Author
-
- Abstract
-
The dynamic development of artificial intelligence (AI) technologies, particularly machine learning and deep neural networks, opens new horizons for personalized medicine. In the field of reproductive health, AI demonstrates high potential in tasks such as predicting the success of in vitro fertilization (IVF), automated analysis of embryo morphology, and interpreting complex genomic data for preimplantation genetic testing [1, 2]. These technological capabilities theoretically allow for increasing the efficiency of ART cycles, reducing the time for clinical decision-making, and, potentially, increasing the accessibility of high-tech care.
- References
-
Tran D. et al. Artificial intelligence in assisted reproductive technology: a systematic review // RBMO. 2022. Vol. 44, № 2. P. 343–353.
Вербицкая Е.А., Смирнова А.А. Цифровые технологии и искусственный интеллект в репродуктологии: обзор возможностей // Проблемы репродукции. 2023. Т. 29, № 1. С. 15–25.
Coiera E. The fate of medicine in the time of AI // The Lancet. 2018. Vol. 392. P. 2331–2332.
Майстренко Н.А. Управленческие аспекты внедрения инноваций в медицинских организациях // Менеджер здравоохранения. 2022. № 5. С. 34–42.
Shaw J. et al. Beyond the algorithm: the human and organizational factors in AI implementation for healthcare // BMJ Health & Care Informatics. 2021. Vol. 28, № 1.
Семенов В.Ю., Калинина Н.М. Цифровая трансформация здравоохранения: экономические и организационные вызовы // Финансы и бизнес. 2021. Т. 17, № 3. С. 78–95.
Greenhalgh T. et al. Beyond adoption: a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies // J Med Internet Res. 2017. Vol. 19, № 11.
Pesapane F. et al. Key challenges for implementing artificial intelligence in radiology // Insights into Imaging. 2022. Vol. 13, № 1. P. 1–10.
Gerke S. et al. Ethical and legal challenges of artificial intelligence-driven healthcare // Artificial Intelligence in Healthcare. 2020. P. 295–336.
Rousseau D.M. Evidence-based management: lessons from evidence-based medicine // Academy of Management Perspectives. 2022. Vol. 36, № 3.
- Downloads
- Published
- 2025-12-29
- Section
- Articles