OPTIMIZING PRODUCTION EFFICIENCY USING TIA PORTAL SIMULATION

Authors

  • Olimbaev Otajon Azamat ugli Tashkent State Technical University named after Islam Karimov Author

Keywords:

Efficiency, Simulation, Optimization, Cycle Time, Energy Consumption, Downtime, Error Rate, Predictive Maintenance, Digital Twin, Industry 4.0.

Abstract

This study investigates the application of Siemens TIA Portal in optimizing production efficiency through virtual commissioning and simulation. Key production parameters—cycle time, energy consumption, machine downtime, and error rates—were optimized within a simulated environment, allowing adjustments to be made without impacting real-world operations. Results indicate that reducing cycle time and optimizing energy consumption significantly enhance throughput and cost-effectiveness. Implementing predictive maintenance scheduling reduced machine downtime, while advanced error correction strategies improved product quality. The study underscores the role of TIA Portal in facilitating sustainable, lean production through its simulation and digital twin capabilities.

Downloads

Download data is not yet available.

References

Siemens AG. "Optimizing Automation Systems with TIA Portal: A Comprehensive Guide to Simulation and Efficiency Testing." Siemens Industry Journal, vol. 7, no. 3, 2020, pp. 45-55.

Xu, X., Chen, K., & Zhang, G. "Digital Twin and Its Applications in Manufacturing: A Review." IEEE Access, vol. 9, 2021, pp. 12929-12942.

Jazdi, Nasser. "Cyber-Physical Systems in the Context of Industry 4.0." IEEE Conference on Automation, Quality, and Testing, Robotics (AQTR), 2014, pp. 1–4.

Kreutzer, Jörg. Modeling and Simulation of Complex Manufacturing Systems: An Approach for Sustainable Design. Springer, 2016.

Zhang, Y., Zhang, J., & Liu, D. "Cycle Time Optimization for Lean Manufacturing: A Simulation Approach." International Journal of Advanced Manufacturing Technology, vol. 107, no. 5, 2020, pp. 1-12.

Wang, L., Liu, Y., & Xu, X. "Energy-Efficient Control of Industrial Systems: A Review." Energy Reports, vol. 5, 2019, pp. 1155-1165.

Lee, J., Lapira, E., & Bagheri, B. "Recent Advances and Trends in Predictive Maintenance for Manufacturing Systems." Journal of Manufacturing Science and Engineering, vol. 142, no. 1, 2020, pp. 1-13.

Yang, J., Wang, L., & Zhang, H. "Optimization of Production Quality Control in Automated Manufacturing Systems Using Sensor Networks." Sensors and Actuators A: Physical, vol. 313, 2022, pp. 112350.

Одилов, Х. А., & Мамасаидов, Ж. Т. ФАКТОРЫ, ПРИВОДЯЩИЕ К МОЧЕКАМЕННОЙ БОЛЕЗНИ И ИХ ВЛИЯНИЕ НА МОРФОФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ МОЧЕВЫВОДЯЩИХ ПУТЕЙ (ОБЗОР ЛИТЕРАТУРЫ).

Odilov, X. A. (2024). NEFROLITIAZ VA SIYDIK YO ‘LLARI INFEKSIYASINI DAVOLASHDA VA METAFILAKTIKASIDA KANEFRON H PREPARATINI QO ‘LLASH SAMARADORLIGINI BAHOLASH. Экономика и социум, (6-1 (121)), 522-529.

Расулова, М. Т., Ганижонов, П. Х., & Хомидчонова, Ш. Х. (2024). Стресс и его влияние на состояние слизистой оболочки пищеварительного тракта: морфологические и функциональные изменения (обзор литературы). Consilium Medicum, 26(5), 286-291.

Одилов, Х. А. (2023). БОЛАЛАРДА ИККИ ТОМОНЛАМА НЕФРОЛИТИАЗНИ ДИАГНОСТИКА ВА ДАВОЛАШГА АМАЛИЙ ТАВСИЯЛАР. INNOVATIVE DEVELOPMENTS AND RESEARCH IN EDUCATION,

Одилов, Х. А. (2023). Экспериментальное обоснование механизма влияния основных факторов, вызывающих мочекаменную болезнь, на морфофункциональное состояние мочевыводящих путей. Экономика и социум, (12 (115)-2), 935-943.

Odilov, X. A., & Kh, K. S. (2023). INDICATORS OF CENTRAL HEMODYNAMICS, VENTILATION, OXIMETRY AND BLOOD FILLING OF THE BRAIN DURING INDUCTION OF ANESTHESIA WITH SEVOFLURANE IN CHILDREN. Экономика и социум, (6-2 (109)), 313-319.

Downloads

Published

2024-11-01