MODELNI REAL MA’LUMOTLARDA O‘QITISH VA BAHOLASH.

Authors

  • Umarov Bekzod Azizovich Farg ‘ona davlat unversiteti amaliy matematika va informatika kafedrasi o‘qituvchisi Author
  • Xolmatov Oxunjon Xasan o‘g’li Farg’ona davlat unversiteti talabasi oxunjonkhalmatov@icloud.com Author

Keywords:

modelni oʻqitish, real maʼlumotlar, baholash, kross-validatsiya, aniqlik, sezgirlik, mashinani oʻqitish, sunʼiy intellect.

Abstract

Modelni real maʼlumotlarda oʻqitish va baholash sunʼiy intellekt tizimlarining haqiqiy muhitda samarali ishlashini taʼminlash uchun zarur hisoblanadi. Ushbu maqolada modelni haqiqiy maʼlumotlarda oʻqitish jarayoni, oʻquv va test toʻplamlarini tayyorlash, baholash koʻrsatkichlari hamda samaradorlikni oshirish uchun ishlatiladigan texnikalar tahlil qilinadi. Natijalar modelning haqiqiy sharoitlarga moslashuvchanligini oshirish va natijalarning aniqligini taʼminlash uchun real maʼlumotlarning ahamiyatini tasdiqlaydi. Ushbu yondashuv turli sohalarda, jumladan tibbiyot, moliya va sanoat sohalarida keng qoʻllanish imkoniyatiga ega.

Downloads

Download data is not yet available.

References

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). MIT Press.

Silver, D., Huang, A., & et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489.

Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of deep visuomotor policies. The Journal of Machine Learning Research, 17(1), 1334-1373.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and Brain Sciences, 40, e253.

Lillicrap, T. P., & et al. (2016). Continuous control with deep reinforcement learning. International Conference on Learning Representations.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26-38.

Francois-Lavet, V., Henderson, P., Islam, R., et al. (2018). An introduction to deep reinforcement learning. Foundations and Trends® in Machine Learning, 11(3-4), 219-354.

Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2), 245-258.

Downloads

Published

2024-11-25