MATHEMATICAL PROGRAMMING METHODS IN OPTIMIZING AGRICULTURAL CLUSTER SYSTEMS: OPTIMIZATION BASED ON LINEAR AND NONLINEAR MODELS
Keywords:
Agrocluster, linear programming, nonlinear programming, optimization, mathematical modeling, resource allocation, production efficiency, agriculture, logistics.Abstract
This article analyzes the use of mathematical programming methods, in particular linear and nonlinear models, in optimizing regional agrocluster systems. Based on the model, the economically optimal organization of production and processing processes, the possibilities of reducing production costs and increasing profits are assessed. The results of the study confirm that mathematical modeling methods can be used to increase the efficiency of the agrocluster system.
Downloads
References
Ewert, F.; van Ittersum, M.K.; Heckelei, T.; Therond, O.; Bezlepkina, I.V.; Andersen, E. Scale Changes and Model Linking Methods for Integrated Assessment of Agri-Environmental Systems. Agric. Ecosyst. Environ. 2011, 142, 6–17.
Reidsma, P.; Wolf, J.; Kanellopoulos, A.; Schaap, B.F.; Mandryk, M.; Verhagen, J.; Van Ittersum, M.K. Climate Change Impact and Adaptation Research Requires Integrated Assessment and Farming Systems Analysis: A Case Study in the Netherlands. Environ. Res. Lett. 2015, 10, 045004.
Alotaibi, A.; Nadeem, F. A Review of Applications of Linear Programming to Optimize Agricultural Solutions. Int. J. Inf. Eng. Electron. Bus. 2021, 13, 11–21.
Manos, B.; Papanagiotou, E. Fruit-Tree Replacement in Discrete Time: An Application in Central Macedonia. Eur. Rev. Agric. Econ. 1983, 10, 69–78.
Rozakis, S.; Tsiboukas, K.; Petsakos, A. Greek Cotton Farmers’ Supply Response to Partial Decoupling of Subsidies. In Proceedings of the 2008 International Congress, Ghent, Belgium, 26–29 August 2008
Prišenk, J.; Turk, J.; Rozman, C.; Borec, A.; Zraki´c, M.; Pažek, K. Advantages of Combining Linear Programming and Weighted ˇ Goal Programming for Agriculture Application. Oper. Res. 2014, 14, 253–260.
Т. С. Бузина, Математическое и информационное обеспечение моделей оптимизации взаимодействия участников в региональных агропромышленных кластерах, автореферат диссертации на соискание ученой степени кандидата технических наук, Иркутская государственная сельскохозяйственная академия, Иркутск, Россия, 2012.
Juraev, F. D. S. (2021). Problems Of Informatization Of Management Of Agricultural Industry And Modeling Of Agriconomic System In A Market Economy. The American Journal of Applied sciences, 3(02), 49-54.
Juraev, F. D., Mallaev, A. R., Aralov, G. M., Ibragimov, B. S., & Ibragimov, I. (2023). Algorithms for improving the process of modeling complex systems based on big data: On the example of regional agricultural production. In E3S Web of Conferences (Vol. 392, p. 01050). EDP Sciences. // https://doi.org/10.1051/e3sconf/202339201050
Mukhitdinov, K. S., & Juraev, F. D. Methods of Macroeconomic Modeling. International Journal of Trend in Scientific Research and Development (IJTSRD), e-ISSN, 2456-6470
Жўраев, Ф. Д., & Аралов, Ғ. М. (2023). Қишлоқ хўжалиги маҳсулотлари ишлаб чиқариш жараёнини эконометрик моделлаштириш заруриятининг асосий жиҳатлари. Educational research in universal sciences, 2(2), 36-43.
Jo‘rayev, F. (2023). Agroklaster tizimini optimallashtirish usullari: noaniqlikni algoritm va model yordamida minimallashtirish. Iqtisodiyot va taʼlim, 24(6), 306-314. / https://doi.org/10.55439/ECED/vol24_iss6/%25x