
“FORMATION OF PSYCHOLOGY AND  PEDAGOGY AS  

INTERDISCIPLINARY SCIENCES”  
 

[29] 
 
 

 

 

MICROSERVICES DEVELOPMENT AND MANAGEMENT 

 

Sayfullaev Shakhzod Oybek Ugli 

 

Abstract. This article is about microservices and their development and 

management. 

Key words. Microservice, technical service, energy, software, architecture, 

program. 

 

Microservices architecture, increasingly adopted by companies such as 

Amazon, Netflix and PayPal, breaks software applications into smaller, 

independent units to increase agility and efficiency. This approach aligns well 

with agile business models and small, cross-functional teams, increasing 

maintainability, deployment, and scalability. This benefits cloud providers by 

promoting cloud-based platforms, reducing infrastructure needs. This evolution 

in software development is driving innovation, reducing costs and enabling 

global collaboration, as well as creating new security challenges. In general, 

microservices lead to faster market adaptation, more energy-efficient 

computing, and increased demand for skilled professionals in the field. 

Microservices is a software architecture style that structures an 

application as a collection of loosely coupled, independently deployable services. 

Each microservice is designed to perform a specific business function, allowing 

us to develop, deploy, and extend it independently of other services within the 

application. Therefore, this approach differs from the traditional monolithic 

architecture, where all components are woven into one large code base. 

The microservices development paradigm emerged as an evolutionary 

approach to building software applications as modular and independently 

deployable units. The main goal of adopting this paradigm is to divide business 

processes into smaller, autonomous parts called services. Each service has its 

own container, programming language, process, data storage and 

communication mechanisms. This approach provides software developers with a 

framework that minimizes implementation effort and offers a lightweight, 

flexible, and extensible way to build and run applications. In addition, MSA 

offers a number of advantages over monolithic software architectures, such as 

improved serviceability, deployability, testability, extensibility, integration, and 

flexibility. 

Key features of microservices 



“FORMATION OF PSYCHOLOGY AND  PEDAGOGY AS  

INTERDISCIPLINARY SCIENCES”  
 

[30] 
 
 

 

 

1. Single responsibility: Each microservice focuses on a specific business 

opportunity or function. 

2. Independence: Microservices can be developed, deployed and extended 

independently. 

3. Autonomous: Each microservice is typically an independent entity with 

its own database and dedicated resources. 

4. Communication: Microservices communicate with each other through 

well-defined APIs, often using HTTP/REST, gRPC, or message queues. 

5. Decentralized data management: Each microservice manages its own 

data, promoting data encapsulation and autonomy. 

6. Polyglot programming: We can develop different microservices using 

different programming languages and technologies, which are best suited for 

their specific tasks. 

7. Fault Isolation: Failures in one microservice do not propagate to other 

services, which increases the overall resilience of the application. 

1. Advantages of microservices 

2. Scalability: Microservices allow individual components to scale 

independently of each other based on demand. 

3. Flexibility: Developers can use different technologies and frameworks for 

different services. 

4. Resilience: If one microservice fails, it does not mean that the entire 

system is down. 

5. Faster development: Smaller teams can work on different services 

simultaneously, which speeds up development cycles. 

6. Easier to implement: CI/CD pipelines (Continuous Integration and 

Continuous Deployment) we can implement more easily. 

7. More Maintainable: Smaller, more focused codebases are easier to 

manage and understand. 

8. Reusability: We can reuse commonly used microservices in different 

applications, reducing development time and effort. 

Disadvantages 

1. Complexity: The architecture introduces additional complexity in the 

areas of interservice communication, data consistency, and service discovery. 

2. Operational costs: Powerful monitoring, logging and management tools 

are required to manage large number of services. 

3. Data Management: Ensuring data consistency and managing distributed 

transactions can be difficult. 



“FORMATION OF PSYCHOLOGY AND  PEDAGOGY AS  

INTERDISCIPLINARY SCIENCES”  
 

[31] 
 
 

 

 

4. Latency: Communication between services over the network can cause 

delays. 

5. Security: We need to protect each service separately, which increases the 

cost of security management 

Microservices are a powerful architectural style, but they are not 

necessarily appropriate for every type of software. The decision to use 

microservices for reengineering should be based on specific criteria and the 

specific needs of the project. Thus, by following a systematic approach and 

considering potential problems, we can efficiently transform legacy software 

into a modern, microservices-based system. This provides long-term benefits in 

terms of scalability, flexibility and sustainability 

It is worth noting that microservices have gained popularity not only 

among developers, but also among managers and project managers. The 

explanation for this lies in microservices' ability to more closely align with how 

business leaders prefer to organize and manage their teams and development 

processes. In other words, microservices serve as an architectural framework 

that better supports the desired operating model. According to a 2021 IBM 

survey of more than 1,200 developers and IT managers, 87 percent of 

microservices users agree that adopting this approach is worth the investment. 

An increasingly popular organizational model involves bringing together 

cross-functional teams to tackle a specific business, service or product. The 

microservices approach fits well with this trend, allowing organizations to form 

small, cross-functional teams centered around a single service or group of 

services while promoting agile operations. The interconnected nature of 

microservices also includes fault isolation and application resiliency. In 

addition, the compact size of the services, along with their clearly defined 

boundaries and communication patterns, simplifies the process for new team 

members to understand the codebase and contribute quickly. 

Microservices are common and cloud providers can benefit the most. For 

MSA, a cloud-based platform eliminates the need for physical infrastructure 

and enables the adoption of a software-as-a-service model instead of developing 

and maintaining software and systems in-house. The cloud is not only about 

infrastructure, but also about providing additional services. This enables secure 

MSA deployment and collaboration with ecosystem partners without increasing 

compliance requirements. 

  



“FORMATION OF PSYCHOLOGY AND  PEDAGOGY AS  

INTERDISCIPLINARY SCIENCES”  
 

[32] 
 
 

 

 

REFERENCES: 

 

1. M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, M. Villari, In the Cloud 

open problems in planning microservices. IEEE Cloud Computing. 3(5):81-88, 

2016. 

2. E. B. H. Yahia, L. Reveillere, Y. D. Bromberg, R. Chevalier, A. Cadot, 

Medley: A lightweight event-driven platform for service content. Web 

engineering International Conference on pp. 3-20, 2016. 

3. P. D. Francesco, P. Lago, and I. Malavolta, Architecture with 

Microservices: a systematic mapping study. The Journal of Systems and 

Software 150:77-97, 2019. 

4. A. Sharma, M. Kumarb and S. A. Agarwal. Software architecture A 

complete survey of styles and patterns. Green computing and communication 

4th international conference on systems 16 - 28, 2015. 

5. A. Hassan and M. Oussalah, Evolutionary Methods: Software A multi-

view / multi-level model for architecture evolution. Journal of Software, 

13(3):146-154, 2018. 

 


