THEOREM ABOUT THE SUM OF THE GALTON-WATSON PROCESS IN ALL PERIODS

Ashurova Fazilat Abdurasul gizi

Senior teacher of mathematics

Sum of the total number of particles up to time n for Abstract: branching Galton-Watson processes. This article considers limit theorems for sums of the total number of particles for branching processes.

Key words: The sum of Galton-Watson process, Markov branching chain, The generating function, The random variable, The distribution function.

Let's suppose that the random variable μ_{n+1} Consists of the sum of μ_1 $\mu_{1,n+1}^{(j)}$, $j = \overline{1, \mu_1}$ Random variables $\mu_{1,n+1}^{(j)}$ is independent of j and identically distributed with μ_{n+1} , so

$$\mu_{n+1} = \begin{cases} \mu_{1,n+1}^{(1)} + \mu_{1,n+1}^{(2)} + \dots + \mu_{1,n+1}^{(\mu_1)} , & \mu_1 > 0 \\ 0 & , & \mu_1 = 0 \end{cases}$$

Where $\mu_n^{(j)}$ is independent and identically distributed with μ_n [5].

If $f_1(s)$ is defined as the generating function of $MS^{\mu_1}, (S \in [0,1])$ μ_1 Then , taking into account above , the generating function of μ_n Is equal to

 $f_n(s) = f_1 \underbrace{f(f \dots f_n(s)) \dots}_{n-1} = f_k(f_{n-k}(s)) = f_{n-k}(f_k(s))$

$$f_0(s) = s, f_n(s) = MS^{\mu_n},$$

 μ_n *n*- the number of particles.

If we donate by

 $\mu_0 + \mu_1 + \dots + \mu_n + \dots = \mu$

The number of particles in all periods , then the generating function of (1) is equal to $MS^{\mu} = F(S), F(1) = 1$ or F(1) < 1, that is, μ can be finite or infinite. In particular, if we donate by $F_n(S)$ The generating function of $\mu_0 + \mu_1 + \dots + \mu_n$, then the relation

(1)

179

$$F_{n+1}(S) = Sf(F_n(S)) \tag{2}$$

Is indicated, where $f(s) = f_1(s)$, as a result, the generating function of (1) Is equal to F(S) = Sf(F(S)) In $n \to +\infty$ (Hawkins, Ulam, Good, Otter, Harris [2]).

 μ can be learned by using (1) and (2).

Works that were considered important results for (1) by Duoss, O,V,Viskov, Boyd [3] can be cited [2]:

 $P\{ \mu_0 + \mu_1 + \dots + \mu_n + \dots = J/\mu_0 = i\} = ij^{-1}p(\xi_1 + \xi_2 + \dots + \xi_j = j - i)$ (3)

Where, ξ_i Is independent and identically distributed with μ_1 . This theorem is very important for the critical and subcritical cases, and for the supercritical case *j* goes to the infinity.

It is known that studying μ in (3) leads to studying $\mu_1^{(1)} + \mu_1^{(2)} + \dots + \mu_1^{(j)}$, where , $\mu_1^{(k)}$, $k = \overline{i,j}$ Is independent and identically distributed with μ_1 . This in turn leads to the study of a sums of independent and lattice identically distributed random variables of x_1, x_2, \dots, x_n .

It is known that $S_n = x_1 + x_2 + \dots + x_n$ is also lattice distributed and the $P_n(k) = P(S_n = na + kh)$ probability is studied, where *h* is a maximum step, *a* is a real number.

If we enter symbols $Z_{n,k} = \frac{an+kh-A_n}{B_n}$, $A_n = MS_n$, $B_n^2 = DS_n$

Then in $0 < Dx_l < +\infty$ and $n \to \infty$

$$\frac{B_n}{h}P_n(k) - \frac{1}{\sqrt{2\pi}}e^{-\frac{Z_{n,k}^2}{2}} \to 0$$
 (4)

Relation is evenly performed with respect to k [4]

Theorem 1. If μ_1 is a Poisson distributed branching process with maximum step h, then under the condition $M\mu_1 \le 1, D\mu_1 < +\infty$,

An equivalent theorem to (4) can be given for

 $P(\mu_1^{(1)} + \mu_1^{(2)} + \dots + \mu_1^{(j)} = aj + kh)$, and the proof of this theorem is done as (4).

If μ_1 Branching process has a distribution function and In relation $M\mu_1 \le 1, D\mu_1 < +\infty$, if the relation

$$\frac{\mu_1^{(1)} + \mu_1^{(2)} + \dots + \mu_1^{(j)} - JM\mu_1}{\sqrt{iD\mu_1}}$$

Has a density function $P_I(x)$ Then in order for $j \to \infty$ da

$$P_J(x) - \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \to 0$$
 (5)

To be valid in $j \to \infty$, it is necessary to have a n_0 Satisfying $P_{n_0}(x) < \infty$,

Where $\mu_1^{(k)}$, $k = \overline{\overline{\iota, j}}$ Are independent and identically distributed , having the distribution as μ_1 .

REFERENCES:

1. Романовский В.И., Дискретные цепи Маркова, М.-Л., Гостехиздат, 1949.

2. Харрис Т., Теория ветвящихся случайных процессов, из., "Мир", М.1966

3. Ватутин В.А., А.М.Зубков, Итоги науки и техники. Теория вероятностей, математическая статистика, теоретическая кибернетика, том 23, М.1985.

4. Гнеденко Б.В., Курс теории вероятностей (Изд.1-5), М, "Наука".1965,1969,....

5. Marek Kimmel, David E. Axelrod, Branching processos in biology. Springer-New York. 2002.

6. Mogyorodi. J.Studia Sci Math. Hung.8.1973, 29.

