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(i.e. equations requiring a solution in integers). All solutions to this equation have been found and an 
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1. INTRODUCTION 

     Pell’s equation has an exceptional history, described in detail in [6, 8]. Firstly, John 

Pell (1611–1685) has nothing to do with the equation, except the fact that Leonhard Euler 

(1707–1783) mistakenly attributed to Pell a solution method founded by William Brouncker 

(1620–1684). Solutions of Pell’s equation for special cases (e.g.,      ) were even 

considered in India and Greece around 400 BC. The first description of a method which 

allowed to construct a nontrivial solution of the equation for an arbitrary D can be found, 

e.g. in Euler’s Algebra, but the method was described without any justification 

guaranteeing that it would find at least one solution. The first proof of correctness was 

published by Joseph Louis Lagrange [9]. 

     Let       be an integer which is not a perfect square. The diophantine equation, 

called Pell’s equation (alternatively called the Pell-Fermat equation): 

                        

has an obviously solution       in nonnegative integers. If   is perfect square, then 

given equation has only one solution, that      .  Really, if assume that     , then since  

     , we have follow equation: 

                

Hence     and    .  

     A well-known but nontrivial result (which we take for granted) is that this 

equation also has nontrivial solutions (i.e., different from      ). In this article we explain 

how the theory developed so far allows finding all solutions of the Pell equation once we 

know the smallest nontrivial solution. 
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Definition 1.1. Let    be the set of all solutions in positive integers to the Eq.       Let 

        called the fundamental solution, if the solution in    for which the first component 

   is minimal among the first components of the elements of   . 

Theorem 1.1. The Pell’s equation always has a solution        

    We have given the proof of this theorem above.  In fact, there are infinitely many 

solutions to the equation! Given that there is one solution, we can generate more from it.  

     The Pell equation has been widely used in solving many problems in mathematics. 

From our point of view, the most significant application of Pell’s equation was done in the 

proof of Matiyasevich’s theorem [4] that we try to formalize in the Mizar system [3]. That 

theorem states that every computable enumerable set is diophantine. It implies the 

undecidability of Hilbert’s 10th problem. The proof is based mainly on a particular case 

              

where   is a natural number. 

 

2. Matrix of the Pell’s equation. 

     Our main goal is to find all solutions to the equation of a given Pell. First we need to 

define somethings. 

Definition 2.1. If     are positive integers, consider the matrix 

       [
   
  

] 

This matrix called matrix of the Pell’s equation. 

     Obviously,          if and only if              

Lemma 2.1. For matrix       , the following holds 

                               

Proof: By elementary computations we obtain the proof: 

              [
   
  

]  [
   
  

]  [
              

            
]                   

     Passing to determinants in Lemma 2.1 we obtain the multiplication principle: 

if               , then                  . 

     It follows from the multiplication principle that if we write 

        
  [

     

    
]          

then            for all  . The sequences    and    are described by the recursive 

system 

{
               

               
                                   

consequence of the equality         
                    

 .  

     We give the theorem about the Matrix and its eigenvalues. We use this theorem to 

find solutions to the Eq.        This theorem is considered important in matrix theory (see 

[1]). 

 

Theorem 2.1. Let         and let       be its eigenvalues. 
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    If      , then for all     we have      
     

    where 

  
 

     
           and     

 

     
          

    If      , then for all     we have      
      

      where      and 

        . 

 

3. Solution of the Pell’s equation. 

     Theorem 2.1 gives explicit formula for    and    in terms of          the 

characteristic equation of matrix          is 

            

with         √  
         √ , and Theorem 2.1 yields, after an elementary 

computation of the matrices     involved in that theorem 

{
 

    
 

 
[      √ )

 
 [      √ )

 
 

   
 

 √ 
[      √ )

 
 [      √ )

 
 
                      

     If    , in which case it gives the trivial solution                 

Theorem 3.1. All solutions in positive integers of the Pell’s equation                   

      are described by the formula        where         is the fundamental solution of 

the equation. 

Proof: Suppose that there are elements in    which are not covered by formula      , 

and among them choose one       for which   is minimal. Using the multiplication 

principle, we observe that the matrix                
   generates a solution in integers        , 

where 

{
           

           
    

We claim that       are positive integers. This is clear for   , as   √   and  

   √   , thus           . Also,         is equivalent to                  
        

     
     or       , which holds because         is a fundamental solution and      is 

not described by relation       (while         is described by this relation, with    ). 

Moreover, since  (     )               , we have                 and        

       . By minimality,         must be of the form      , i.e.,               
           

  for 

some positive integer    Therefore                
     i.e.,       is of the form      , a 

contradiction. 

Example 3.1. Find all solutions in positive integers to Pell’s equation 

          

Solution: The fundamental solution is               and the associated matrix is  

       [
  
  

] 

The solutions            are given by       
 , i.e. 
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{
 

    
 

 
[(   √ )

 
 (   √ )

 
]

   
 

 √ 
[(   √ )

 
 (   √ )

 
]  

 

 

     We can extend slightly the study of the Pell equation by considering the more 

general equation 

                           

where we assume that    is not a perfect square (it is not difficult to see that if    is a 

square, then the equation has only trivial solutions). Contrary to the Pell equation, this Eq. 

      does not always have solutions (the reader can check that the equation          

has no solutions in integers by working modulo 3). 

     Define the Pell resolvent of       by  

                        

and let      be the set of solutions in positive integers of Eq.     . Thus       is the set 

denoted     when considering the Pell equation (it is the set of solutions of the Pell 

resolvent). If         are positive integers consider the matrices 

       [
   
   

]                 [
    
  

]  

the second matrix being the matrix associated with the Pell resolvent equation. 

By the computations as above, we obtain: 

if             and              then                        , 

Using the previous theorem and the multiplication principle, one easily obtains the 

following result, whose formal proof is left to the reader. 

Theorem 3.2. Assume that Eq.       is solvable in positive integers, and let         be 

its minimal solution (i.e.,    is minimal). Let         be the fundamental solution of the 

resolvent Pell equation      . Then all solutions         in positive integers of Eq.       are 

generated by 

                                               

    It follows easily from       that 

{
             

             
                       

where            is the general solution to the Pell resolvent equation. 

     Below we will consider the problems with the application of the Pell equation. 

 

4. Application of the Pell’s Equations. 

     4.1. Examples. 

Example 4.1.1. Solve in positive integers the equation 

           

Solution: This equation is solvable and its minimal solution is                The Pell 

resolvent equation is          , with fundamental solution                 Using 
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formula       and then        we deduce that the solutions in positive integers 

are          , where 

{
 
 

 
 

   
  √  

  
 (    √  )

 
 

  √  

  
 (    √  )

 

   
  √  

  
 (    √  )

 
 

  √  

  
 (    √  )

 
 

 

 

Example 4.1.2 (Kursak Competition). Prove that if      √       is an integer 

for some      then   is a perfect square. 

Proof: For   to be an integer, we must have           for some    This is Pell’s 

equation with       If we try to find the fundamental solution, we have a really hard 

time doing so. Hence we adopt a trick: write the equation as                       .  

     The fundamental solution to          is not hard to find, and it is        Here, 

  is odd. We generate more solutions from this till we find the second number even. 

(   √ )
 

       √   

     Thus          is the fundamental solution to            (Because       

  √        √  )Since      , we have: 

   
 

 
[(      √  )

 
 (      √  )

 
] 

     Therefore, 

     (      √  )
 

 (      √  )
 

    

 (   √ )
  

 (   √ )
  

  (   √ )
 
(   √ )

 
 

 [(   √ )
 

 (   √ )
 
]
 

 

and we are done! 

 

Example 4.1.3. (Vietnam 2016). Find all   such that 

√
    

 
 

is a prime. 

Solution: Suppose this equals  . Squaring and rearranging, we find           This 

is not Pell’s equation if   is odd. We can easily see that       works. So when       

small cases suggest that   odd doesn’t seem to work. This observation is correct; modulo  ; 

the equation implies   is even. So we have the negative Pell’s equation:  

            

where   
 

 
   So consider the general Pell’s equation         . Since       is a 

solution, hence the general solution for    is 

     
 

 
[(  √ )

    
 (  √ )

    
]   
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  √ 

 
 (   √ )

 
 

  √ 

 
 (   √ )

 
 

     So we obtain the recurrence               with              . Similarly 

we get               with              . Then 

                         ,                             . 

Hence,      if and only if              which also corresponds to     . Hence, we 

must have     and so the only other solution we get is    . 

     4.2. Problems for Practice. 

Problem 4.2.1. A triangular number is a number of the form  

        

for some positive integer  . Find all triangular numbers which are perfect squares. 

Problem 4.2.2. Find all positive integers   such that     and      are 

simultaneously perfect squares. 

Problem 4.2.3. Find all integers     such that  

           . 

Problem 4.2.4.  The difference of two consecutive cubes equals    for some positive 

integer  . Prove that      is a perfect square. 

Problem 4.2.5. Find all triangles whose side lengths are consecutive integers and 

whose area is an integer. 
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